|
This is a code based on the method described in [this recent paper.](https://arxiv.org/abs/2105.06372)
|
|
This is a code based on the method described in [this recent paper.](https://arxiv.org/abs/2105.06372)
|
|
|
|
|
|
The script 'run_this_script.py' produces the time trace shown in Fig. 2d in the main text and in Fig. S1 a in the supplementary information.
|
|
The script 'run_this_script.py' produces the time trace shown in Fig. 2d in the main text and in Fig. S1 a in the supplementary information. Below is a description of the variables that appear in the script 'run_this_script.py'.
|
|
|
|
|
|
<h1>Section 1: Hamiltonian</h1>
|
|
<h1>Section 1: Hamiltonian</h1>
|
|
We consider spinful Fermions on a lattice with L sites. The Hamiltonian we consider is
|
|
We consider spinful Fermions on a lattice with L sites. The Hamiltonian we consider is
|
... | @@ -9,7 +9,7 @@ We consider spinful Fermions on a lattice with L sites. The Hamiltonian we consi |
... | @@ -9,7 +9,7 @@ We consider spinful Fermions on a lattice with L sites. The Hamiltonian we consi |
|
|
|
|
|
We use an on-site potential of the form <a href="https://www.codecogs.com/eqnedit.php?latex=V_{i,&space;\sigma}=&space;\Delta_{\sigma}(i-L/2)&space;+&space;\alpha&space;(i-L/2)^2&space;+&space;\delta_{i}&space;+&space;\Delta_{aa}\cos(2\pi&space;\beta&space;i&space;+&space;\phi_{aa}&space;)" target="_blank"><img src="https://latex.codecogs.com/gif.latex?V_{i,&space;\sigma}=&space;\Delta_{\sigma}(i-L/2)&space;+&space;\alpha&space;(i-L/2)^2&space;+&space;\delta_{i}&space;+&space;\Delta_{aa}\cos(2\pi&space;\beta&space;i&space;+&space;\phi_{aa}&space;)" title="V_{i, \sigma}= \Delta_{\sigma}(i-L/2) + \alpha (i-L/2)^2 + \delta_{i} + \Delta_{aa}\cos(2\pi \beta i + \phi_{aa} )" /></a>. Here, <a href="https://www.codecogs.com/eqnedit.php?latex=\delta_i&space;\in&space;[-\Delta_r,&space;\Delta_r]" target="_blank"><img src="https://latex.codecogs.com/gif.latex?\delta_i&space;\in&space;[-\Delta_r,&space;\Delta_r]" title="\delta_i \in [-\Delta_r, \Delta_r]" /></a> is a random onsite potential.
|
|
We use an on-site potential of the form <a href="https://www.codecogs.com/eqnedit.php?latex=V_{i,&space;\sigma}=&space;\Delta_{\sigma}(i-L/2)&space;+&space;\alpha&space;(i-L/2)^2&space;+&space;\delta_{i}&space;+&space;\Delta_{aa}\cos(2\pi&space;\beta&space;i&space;+&space;\phi_{aa}&space;)" target="_blank"><img src="https://latex.codecogs.com/gif.latex?V_{i,&space;\sigma}=&space;\Delta_{\sigma}(i-L/2)&space;+&space;\alpha&space;(i-L/2)^2&space;+&space;\delta_{i}&space;+&space;\Delta_{aa}\cos(2\pi&space;\beta&space;i&space;+&space;\phi_{aa}&space;)" title="V_{i, \sigma}= \Delta_{\sigma}(i-L/2) + \alpha (i-L/2)^2 + \delta_{i} + \Delta_{aa}\cos(2\pi \beta i + \phi_{aa} )" /></a>. Here, <a href="https://www.codecogs.com/eqnedit.php?latex=\delta_i&space;\in&space;[-\Delta_r,&space;\Delta_r]" target="_blank"><img src="https://latex.codecogs.com/gif.latex?\delta_i&space;\in&space;[-\Delta_r,&space;\Delta_r]" title="\delta_i \in [-\Delta_r, \Delta_r]" /></a> is a random onsite potential.
|
|
|
|
|
|
Below is a decription of the variables that appear in secion 1 of the script 'run_this_script.py'
|
|
|
|
|
|
|
|
1. J is the hopping rate (as it appears in the above Hamiltonian)
|
|
1. J is the hopping rate (as it appears in the above Hamiltonian)
|
|
2. Delta_random = <a href="https://www.codecogs.com/eqnedit.php?latex=\Delta_{r}" target="_blank"><img src="https://latex.codecogs.com/gif.latex?\Delta_{r}" title="\Delta_{r}" /></a>
|
|
2. Delta_random = <a href="https://www.codecogs.com/eqnedit.php?latex=\Delta_{r}" target="_blank"><img src="https://latex.codecogs.com/gif.latex?\Delta_{r}" title="\Delta_{r}" /></a>
|
... | | ... | |